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Abstract

In a multi-channel S-matrix approach, data on ππ → ππ,KK, ηη in the IGJPC = 0+2++ sector

and ππ scattering in the 1+3−− sector are analyzed to study the f2- and ρ3-mesons, respectively.

Spectroscopic implications and possible classification of the f2-states in terms of the SU(3) multi-
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PACS numbers: 11.55.Bq, 13.75.Lb, 14.40.Cs

∗ E-mail address: surovcev@theor.jinr.ru
† E-mail address: bydz@ujf.cas.cz
‡ E-mail address: Robert.Kaminski@ifj.edu.pl
§ E-mail address: fyzinami@unix.savba.sk

1

http://lanl.arxiv.org/abs/1104.0538v1


I. INTRODUCTION

We present results of the coupled-channel analysis of data on processes ππ → ππ,KK, ηη

in the IGJPC = 0+2++ sector and on the ππ scattering in the 1+3−− sector.

Our knowledge about the existence and parameters of resonances in the 0+2++ sector is

not clear yet. Nine from the thirteen resonances, discussed in the PDG issue [1] and in the

literature [2], f2(1430), f2(1565), f2(1640), f2(1810), f2(1910), f2(2000), f2(2020), f2(2150),

f2(2220), must be still confirmed in various experiments and analyses. In the analysis of

processes pp → ππ, ηη, ηη′ [2] five resonances – f2(1920), f2(2000), f2(2020), f2(2240) and

f2(2300) – have been obtained, where the f2(2000) is a candidate for the glueball. In our

analysis of ππ → ππ,KK, ηη [3] we supported this conclusion on the f2(2000).

The tensor sector is also interesting because here multi-quark states might be observed

apparently as separate states, which are difficult to observe in the scalar sector where owing

to their large widths these states can manifest themselves only in a distortion of the qq̄

picture.

Investigation in the IGJPC = 1+3−− sector is motivated by those results [3, 4] in the

0+2++, 0+0++ and 1+1−− sectors, which (if they are confirmed) will require revisions of the

mainstream quark models, e.g. [5], and by a possibility to support (or not) these results

when studying of other mesonic sectors. These are the earlier obtained disagreements with

predictions of the indicated model, e.g., with respect to the f0(600) and f0(1500) in the

scalar sector and to the second qq̄ nonet in the tensor sector [3, 4]. Especially it is worth to

remind that result in the vector sector: In our multi-channel analysis [3, 6] of the P -wave ππ

scattering data [7] and in the re-analysis of the process e+e− → ωπ0 [8], the old conclusion

[9] was confirmed (which, to the point, is consistent with results of some quark models [10])

that the first ρ-like meson is ρ(1250) unlike ρ(1450) cited in the PDG tables [1]. However,

existence of both states does not contradict to the ππ scattering data [3, 6]. It is important

that for both states there are apparently possible SU(3) partners. For the ρ(1250) these

partners are: the isodoublet K∗(1410) and the isoscalar ω(1420), for which the obtained

mass is in range 1350-1460 MeV [1], whereas the Gell-Mann–Okubo (GM-O) formula

3m2
ω′

8

= 4m2
K∗′ −m2

ρ′

gives for the mass of the eighth component of corresponding octet the value about 1460 MeV.

The ρ(1450), which might be the isovector 3D1 state in the qq̄ picture, could be put into
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the octet together with the isodoublet K∗(1680). Then from the GM-O formula, the value

1750 MeV is obtained for the mass of the eighth component of this octet. This corresponds

to one of the observations of the second ω-like meson which is cited in the PDG tables under

the ω(1650) and has the mass, obtained in various works, from 1606 to 1840 MeV.

In the mainstream quark model [5], the first ρ-like meson is usually predicted by about

200 MeV higher than the ρ(1250), and also the first K∗-like meson is obtained at 1580 MeV,

whereas the corresponding well established resonance has the mass of about 1410 MeV.

Therefore, it is important to check if the conclusion on the ρ(1250) is supported by investi-

gation in other mesonic sectors. Considering the (J,M2)-plot for the daughter ρ-trajectory,

related to the suggested ρ(1250), one concludes that there should exist the 1+3−−-state at

about 1950 MeV –“ρ3(1950)”. It is worth to check this state analyzing accessible data on

the F -wave ππ scattering [7].

In the present investigation, we applied the multi-channel S-matrix approach [3]. To

generate resonance poles and zeros on the Riemann surface, we used the multi-channel

Breit–Wigner forms taking into account the Blatt–Weisskopf barrier factors given by spins

of resonances [11].

II. THE S-MATRIX FORMALISM FOR N COUPLED CHANNELS

The N-channel S-matrix is determined on the 2N -sheeted Riemann surface. The matrix

elements Sab (a, b = 1, 2, · · · , N denote channels) have the right-hand cuts along the real

axis of the complex-s plane (s is the invariant total energy squared), related to the consid-

ered channels and starting in the channel thresholds si (i = 1, · · · , N), and the left-hand

cuts related to the crossed channels. The main model-independent part of resonance contri-

butions is given by poles and zeros on the Riemann surface. Generally, this representation

of resonances can be obtained utilizing formulas for the analytic continuations of the matrix

elements for the coupled processes to the unphysical sheets of the Riemann surface, as it

was performed for the N-channel case in Ref. [12].

In this work, the Le Couteur–Newton relations [13] are used to generate the resonance

poles and zeros on the Riemann surface. These relations express the S-matrix elements of

all coupled processes in terms of the Jost matrix determinant d(k1, · · · , kN) (ki = 1
2

√
s− si)
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that is a real analytic function with the only branch-points at ki = 0:

Saa =
d(k1, · · · , ka−1,−ka, ka+1, · · · , kN)

d(k1, · · · , kN)
,

SaaSbb − S2
ab =

d(k1, · · · , ka−1,−ka, ka+1, · · · , kb−1,−kb, kb+1, · · · , kN)
d(k1, · · · , kN)

. (1)

The real analyticity implies d(s∗) = d∗(s) for all s. The N-channel unitarity requires

|d(k1, · · · ,−ka, · · · , kN)| ≤ |d(k1, · · · , kN)|, a = 1, · · · , N,

|d(−k1, · · · ,−ka, · · · ,−kN)| = |d(k1, · · · , ka, · · · , kN)|

to hold for physical values of s.

The d-function is taken in the separable form d = dBdres. The resonance part dres is

described using the multi-channel Breit–Wigner forms

dres(s) =
∏

r

[

M2
r − s− i

N
∑

i=1

ρ2J+1
ri Rrif

2
ri

]

, (2)

where ρri = 2ki/
√

M2
r − si , f 2

ri/Mr indicates to the partial width of a resonance with

mass Mr, and Rri(s,Mr, si, rri) are the Blatt–Weisskopf barrier factors with si the channel

threshold and rri a radius of the i-channel decay of the state “r”.

The background part dB represents mainly an influence of channels which are not ex-

plicitly included. Opening of these channels causes a rise of the corresponding elastic and

inelastic phase shifts in dB

dB = exp



−i

N
∑

i=1

(

√

s− si
s

)2J+1

(ai + ibi)



 . (3)

From the formulas of analytic continuation of the matrix elements for the coupled pro-

cesses to the unphysical sheets of the Riemann surface [12], one can conclude that only on

the sheets with the numbers 2i (i = 1, · · · , N), i.e. II, IV, VIII, XVI,..., the analytic contin-

uations have the form ∝ 1/SI
ii where SI

ii is the S-matrix element on the physical (I) sheet.

This means that only on these sheets the pole positions of resonances are at the same points

of the s-plane, as the resonance zeros on the physical sheet, i.e., they are not shifted due to

the coupling of channels. Therefore, the resonance parameters should be calculated from the

pole positions only on these sheets.

In the four-channel case, considered below, the Riemann surface is sixteen-sheeted. The

sheets II, IV, VIII, and XVI correspond to the following signs of analytic continuations of the
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quantities Im
√
s− s1, Im

√
s− s2, Im

√
s− s3, and Im

√
s− s4: − + ++,+− ++,+ +−+,

and + + +−, respectively.

III. ANALYSIS OF THE IGJPC = 0+2++ SECTOR

In the analysis of data on the isoscalar D-waves of processes ππ → ππ,KK, ηη,

we have considered explicitly also the channel (2π)(2π). Therefore, we have ap-

plied the four-channel Breit–Wigner form for the resonance part (2) of the function

d(
√
s− s1,

√
s− s2,

√
s− s3,

√
s− s4). The Blatt–Weisskopf barrier factor for a particle

with J = 2 is

Rri =
9 + 3

4
(
√

M2
r − si rri)

2 + 1
16
(
√

M2
r − si rri)

4

9 + 3
4
(
√
s− si rri)2 +

1
16
(
√
s− si rri)4

(4)

with radii 0.943 fm for resonances in all channels, except for f2(1270) and f2(1960) for

which the radii are (as the results of the analysis): for f2(1270), 1.498, 0.708 and 0.606 fm

in channels ππ, KK and ηη, respectively, and for f2(1960), 0.296 fm in channel KK.

The background part (3) has the form

dB = exp



−i

3
∑

n=1

(

√

s− sn
s

)5

(an + ibn)



 , (5)

where

a1 = α11 +
s− 4m2

K

s
α12 θ(s− 4m2

K) +
s− sv

s
α10 θ(s− sv),

bn = βn +
s− sv

s
γn θ(s− sv).

sv ≈ 2.274 GeV2 is a combined threshold of the channels ηη′, ρρ, and ωω.

The data for the ππ scattering are taken from an energy-independent analysis by

B. Hyams et al. [7]. The data for ππ → KK, ηη are taken from works [14].

A satisfactory description (with the total χ2/NDF = 161.147/(168 − 65) ≈ 1.56) is

obtained both with ten resonances – f2(1270), f2(1430), f ′
2(1525), f2(1580), f2(1730),

f2(1810), f2(1960), f2(2000), f2(2240) and f2(2410) – and with eleven states when adding

one more resonance f2(2020) which is needed in the combined analysis of data on processes

pp → ππ, ηη, ηη′ [2]. The description with eleven states is practically the same as that with

ten resonances: the total χ2/NDF = 156.617/(168− 69) ≈ 1.58.

The parameters of the Breit–Wigner generators of the poles are shown in Table I for the

ten-states scenario and in Table II for the eleven-states one.
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TABLE I: The parameters of the Breit–Wigner forms for 10 f2-states (in MeV).

State Mr fr1 fr2 fr3 fr4

f2(1270) 1275.3±1.8 470.8±5.4 22.4±4.6 201.5±11.4 90.4±4.76

f2(1430) 1450.8±18.7 128.3±45.9 8.2±65 562.3±142 32.7±18.4

f ′
2(1525) 1535±8.6 28.6±8.3 41.6±160 253.8±78 92.6±11.5

f2(1600) 1601.4±27.5 75.5±19.4 127±199 315±48.6 388.9±27.7

f2(1730) 1723.4±5.7 78.8±43 107.6±76.7 289.5±62.4 460.3±54.6

f2(1810) 1761.8±15.3 129.5±14.4 90.3±90 259±30.7 469.7±22.5

f2(1960) 1962.8±29.3 132.6±22.4 65.4±94 333±61.3 319±42.6

f2(2000) 2017±21.6 143.5±23.3 450.4±221 614±92.6 58.8±24

f2(2240) 2207±44.8 136.4±32.2 166.8±104 551±149 375±114

f2(2410) 2429±31.6 177±47.2 460.8±209 411±196.9 4.5±70.8

The background parameters for the ten-states scenario are: α11 = −0.07805, α12 =

0.03445, α10 = −0.2295, β1 = −0.0715, γ1 = −0.04165, β2 = −0.981, γ2 = 0.736, β3 =

−0.5309, γ3 = 0.8223.

TABLE II: The parameters of the Breit–Wigner forms for 11 f2-states.

State Mr fr1 fr2 fr3 fr4

f2(1270) 1276.3±1.8 468.9±5.5 7.2±4.6 201.6±11.6 89.9±4.79

f2(1430) 1450.5±18.8 128.3±45.9 8.2±63 562.3±144 32.7±18.6

f ′
2(1525) 1534.7±8.6 28.5±8.5 51.6±155 253.9±79 89.5±12.5

f2(1600) 1601.5±27.9 75.5±19.6 127±190 315±50.6 388.9±28.6

f2(1730) 1719.8±6.2 78.8±43 108.6±76. 289.5±62.6 460.3±54.5

f2(1810) 1760±17.6 129.5±14.8 90.3±89.5 259±32 469.7±25.2

f2(1960) 1962.2±29.8 132.6±23.3 62.4±91.3 331±61.5 319±42.8

f2(2000) 2006±22.7 155.7±24.4 574.8±211 169.5±95.3 60.4±26.7

f2(2020) 2027±25.6 50.4±24.8 128±190 441±196.7 58±50.8

f2(2240) 2202±45.4 133.4±32.6 168.8±103 545±150.4 381±116

f2(2410) 2387±33.3 175±48.3 462.8±211 395±197.7 24.5±68.5
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The background parameters for the eleven-states case are: α11 = −0.0755, α12 = 0.0225,

α10 = −0.2344, β1 = −0.0782, γ1 = −0.05215, β2 = −0.985, γ2 = 0.7494, β3 = −0.5162,

γ3 = 0.786.

In the following we consider the eleven-states scenario (see discussion in Section V). In

Figures 1 and 2 we demonstrate obtained energy dependences of the analyzed quantities,

compared with the experimental data.
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FIG. 1: The phase shift and module of the D-wave ππ-scattering S-matrix element.

In Table III we show the poles in the complex energy plane
√
s (obtained using eqs.(2)

and (4)), which must be used for the calculation of the masses and widths of resonances.

Errors of the pole positions shown in Table III are estimated using a Monte Carlo method.

In this method, the parameters Mr and frj are randomly generated using a normal distribu-

tion (Gaussian) with the width given by the parameter error in Table II. Having generated

the parameters, distributions (histograms for deviations of the pole positions) for the real

and imaginary parts of the pole positions are evaluated and the standard deviations, which

characterize “widths” of the distributions for the pole position, are calculated.

The masses mres and total widths Γtot of states are calculated from the pole positions
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FIG. 2: The squared modules of the ππ → KK and ππ → ηη D-wave S-matrix elements.

using the denominator of the resonance part of amplitude in the form

T res =
√
sΓel/(m

2
res − s− i

√
sΓtot).

Then

mres =
√

E2
r + (Γr/2)2, Γtot = Γr. (6)

The obtained values of the mres and Γtot are shown in Table IV. It is clear that the values

of these quantities, calculated from the pole positions on various sheets, mutually slightly

differ; for the f2(2240) and f2(2410), lying in the energy region where data are very scanty,

even considerably. We show only the values which match best the corresponding values Mr

and the quantities
∑N

i=1 f
2
ri/Mr. The sheets on which the poles, used in calculation of mres

and Γtot, lie are also indicated. If two sheets are indicated, the pole positions on these sheets

do not differ more than 1-1.5 MeV.
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TABLE III: The f2-resonance poles on sheets II, IV, VIII, and XVI for eleven states.
√
sr =

Er − iΓr/2 in MeV is given.

II IV VIII XVI

State Er Γr/2 Er Γr/2 Er Γr/2 Er Γr/2

f2(1270) 1282±2.6 67.5±4.2 1257±3.5 99.6±3 1277±3 73.4±4 1264±3.4 98±3.5

f2(1430) 1425±48 98.8±54 1421±49 109±53 1426±48 98±55 1422±49 109±52

f ′
2(1525) 1534±13 24±28 1534±13 23±9 1534±13 17±29 1534±13 19.5±28

f2(1600) 1590±44 80.5±34 1592±41 74±34 1600±41 23±35 1601±40 9.4±35

f2(1710) 1710±12 87±27 1711±11 84±27 1717±9.6 42.4±27 1718±9 32±27

f2(1810) 1752±26 79±15 1752±26 84±15 1757±25 50.6±15 1758±25 36.5±15

f2(1960) 1958±43 50±19 1957±43 57±19 1962±42 3.5±19 1962±42 7.4±19

f2(2000) 2003±36 84±62 2004±35 68±64 2003±35 82±64 2002±36 95±62

f2(2020) 2025±39 52±51 2026±38 45.4±57 2026±38 42.5±57 2025±39 52±51

f2(2240) 2196±62 103±54.5 2197±62 98±55 2202±61 24±57 2201±62 45±57

f2(2410) 2385±49 71±58 2387±47 5.6±61 2387±48 18.7±60 2385±49 84±59

TABLE IV: The masses and total widths of the f2-resonances (all in MeV)

.

f2(1270) f2(1430) f ′
2(1525) f2(1600) f2(1710) f2(1810)

mres 1268.0±3.4 1425.5±49.2 1533.8±13.4 1592.3±44.3 1712.2±11.6 1753.8±25.6

Γtot 196.0±7.0 218.6±105.4 48.4±56.0 161.0±68.6 174.0±53.8 167.6±29.4

Sheet XVI IV, XVI II, IV II II IV

f2(1960) f2(2000) f2(2020) f2(2240) f2(2410)

mres 1958.0±42.9 2004.0±36.3 2026.0±39.0 2198.8±62.3 2386.0±48.7

Γtot 113.6±37.0 189.2±123.2 104.4±102.2 205.6±109.0 167.6±117.0

Sheet IV XVI II, XVI II XVI

IV. ANALYSIS OF THE ISOVECTOR F -WAVE OF ππ SCATTERING

In analysis of the ππ-scattering data in the IGJPC = 1+3−− sector by B. Hyams et

al. [7], we took into account that the dominant modes of decay of the ρ3(1690) are ππ,

4π, ωπ, KK and KKπ, and therefore have used the four-channel Breit–Wigner forms in
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constructing the Jost matrix determinant d(
√
s− s1,

√
s− s2,

√
s− s3,

√
s− s4) where s1,

..., s4 are, respectively, the thresholds of the first four channels given above. The resonance

poles and zeros in the S-matrix are generated by the Le Couteur–Newton relation

S11 = d(−
√
s− s1, · · · ,

√
s− s4)/d(

√
s− s1, · · · ,

√
s− s4) . (7)

The resonance part (2) of the d-function has the form

dres(s) =
∏

r



M2
r − s− i

4
∑

j=1

(√

s− sj
M2

r − sj

)7

Rrj f
2
rj



 . (8)

The Blatt–Weisskopf factor for a particle with J = 3 is

Rrj=
15+3(

√

M2
r − sj rrj)

2+ 2
5
(
√

M2
r − sj rrj)

4+ 1
15
(
√

M2
r − sj rrj)

6

15 + 3(
√
s− sj rrj)2 +

2
5
(
√
s− sj rrj)4 +

1
15
(
√
s− sj rrj)6

(9)

with radii of 0.927 fm in all channels as the result of the analysis.

The background part (3) turned out to be elastic:

dB = exp



−i

(

√

s− 4m2
π

s

)7

a1



 (10)

where a1 = −0.0138± 0.0011.

In the analysis we considered the cases with one and two resonances. We obtained a good

description in both cases: the total χ2/NDF ≈ 1. In Figure 3 we show results of our fitting

to the data for the case of two resonances.

The obtained parameters of the Breit–Wigner forms and the generated poles on the

relevant sheets are shown in Tables V and VI, respectively.

TABLE V: The parameters of the Breit–Wigner forms for two ρ3-like states (all in MeV).

State Mr fr1 fr2 fr3 fr4

ρ3(1690) 1707.8±13.7 284.4±15.9 435.3±21.0 208.6±18.4 113.5±25

ρ3(1950) 1833.5±28.6 96.3±18.3 331.8±28.0 297.7±16.5 110.4±28.3

Finally, in Table VII we show the mass and total width of the ρ3(1690) and its branching

ratios compared with the average values from the PDG tables.
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FIG. 3: The phase shift and module of the ππ-scattering F -wave S-matrix element.

TABLE VI: The poles, generated by the Breit–Wigner forms on sheets II, IV, VIII, and XVI.

√
sr = Er − iΓr/2 in MeV is given.

II IV VIII XVI

State Er Γr/2 Er Γr/2 Er Γr/2 Er Γr/2

ρ3(1690) 1705±5.6 48±8 1707.6±4.5 15.3±13 1703.6±3.9 70±14 1700.5±4.4 87.7±13.5

ρ3(1950) 1830.4±28 55±14 1833.5±29 0.0±22.7 1833.5±27.5 11.7±15 1831±24.3 53.3±22.3

V. DISCUSSION AND CONCLUSIONS

• In the IGJPC = 0+2++ sector, we carried out two analyses – without and with the

f2(2020). We did not obtain f2(1640), f2(1910), f2(2150) and f2(2010), however, we

saw f2(1430) and f2(1710) which are related to the statistically-valued experimental

points.

• Usually one assigns the states f2(1270) and f ′
2(1525) to the first tensor nonet. One
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TABLE VII: The parameters of the ρ3(1690) and its branching ratios compared with the average

values from the PDG tables.

Scenario mres [MeV] Γtot [MeV] Γππ/Γtot Γππ/Γ4π ΓKK/Γππ Γωπ/Γ4π ΓKK/Γtot

1 state 1703±4 179±12 0.29±0.022 0.472±0.097 0.146±0.06 0.235±0.04 0.042±0.03

2 states 1702.7±4 175±11 0.271±0.021 0.427±0.096 0.159±0.045 0.23±0.04 0.043±0.032

PDG 1688.8±2.1 160±10 0.243±0.013 0.332±0.026 0.118+0.039
−0.032 0.23±0.05 0.013±0.0024

could assign the f2(1600) and f2(1710) states to the second nonet, though the isodou-

blet member is not discovered yet. If a2(1730) is the isovector of this octet and if

f2(1600) is almost its eighth component, then from the GM-O formula

M2
K∗

2

=
1

4
(3M2

f2(1600)
+M2

a2(1730)
),

one would expect this isodoublet mass at about 1633 MeV. In the relation for masses

of nonet

Mf2(1600) +Mf2(1710) = 2MK∗

2
(1633),

the left-hand side is only by 1.2% larger than the right-hand one.

In Ref. [15], one has observed the strange isodoublet in the mode K0
sπ

+π− with yet

indefinite remaining quantum numbers and the mass 1629± 7 MeV. This state could

be the tensor isodoublet of the second nonet.

• The states f2(1963) and f2(2207) together with the isodoublet K∗
2(1980) could be put

into the third nonet. Then in the relation for masses of nonet

Mf2(1963) +Mf2(2207) = 2MK∗

2
(1980),

the left-hand side is only by 5.3% larger than the right-hand one.

If one considers f2(1963) as the eighth component of octet, the GM-O formula gives

Ma2 = 2030 MeV. This value coincides with that for the a2 meson obtained in analysis

[16]. This state is interpreted [2] as the second radial excitation of the 1−2++ state

based on consideration of the a2 trajectory on the (n,M2) plane where n is the radial

quantum number of the qq̄ state.
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• As to the f2(2000), the presence of the f2(2020) in the analysis with eleven resonances

helps to interpret f2(2000) as the glueball. In the case of ten resonances, the ratio of

the ππ and ηη widths is in the limits obtained in Ref. [2] for the tensor glueball on

the basis of the 1/Nc-expansion rules. However, the KK width is too large for the

glueball. In both, practically the same, descriptions of the processes, the parameters

of f2 states do not differ too much, except for the f2(2000) and f2(2410). The mass

of the latter has decreased by about 40 MeV but the KK width of the former has

changed significantly. Now all the obtained ratios of the partial widths are in the

limits corresponding to the glueball.

The question of interpretation of the f2(2020) and f2(2410) is open.

• Finally we have f2(1430) and f2(1710) which are neither qq̄ states nor glueballs. Since

one predicts that masses of the lightest qq̄g hybrids are bigger than those of lightest

glueballs, these states might be the 4-quark ones. Then for the isodoublet mass of the

corresponding nonet, we would expect the value 1570-1600 MeV. For now we do not

know any experimental indications for the tensor isodoublet of that mass. However,

in the known experimental spectrum of the K∗
2 family, there is a 500-MeV unoccupied

gap from 1470 to 1970 MeV [1], except for the above work [15]. Moreover, as one can

see in the PDG tables on the a2(1700) listing, widths of the observed isovector tensor

states in the 1660-1775-MeV interval differ by the factor 2-3, i.e., the states possess

various properties. For example, the broad state with mass 1702± 7 MeV and width

417 ± 19 MeV, observed in p̄p → ηηπ0 [17], might be the isovector member of the

corresponding four-quark nonet.

Of course, an assumption of this possibility presupposes an existence of the scalar

tetraquarks at lower energies [18] which are not seen in our analysis [3]. One can

argue that these states are a part of the background due to their very large widths.

• The analysis of the F -wave ππ scattering data by B. Hyams et al. [7] indicates that,

except for the known ρ3(1690) (in our analysismres≈1703 MeV, Γtot≈175 MeV), there

might be one more state lying above 1830 MeV. Since the ππ scattering data above

1890 MeV are absent, it is impossible to say something conclusive on parameters of

this state. However, the ρ3(1950) does not contradict to the data but instead improves

a little bit the obtained parameters of the ρ3(1690) and its branching ratios when

13



comparing them with the PDG tables [1].
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